Fusion of NASA Airborne Snow Observatory (ASO) Lidar Time Series over Mountain Forest Landscapes
نویسندگان
چکیده
Mountain ecosystems are among the most fragile environments on Earth. The availability of timely updated information on forest 3D structure would improve our understanding of the dynamic and impact of recent disturbance and regeneration events including fire, insect damage, and drought. Airborne lidar is a critical tool for monitoring forest change at high resolution but it has been little used for this purpose due to the scarcity of long-term time-series of measurements over a common region. Here, we investigate the reliability of on-going, multi-year lidar observations from the NASA-JPL Airborne Snow Observatory (ASO) to characterize forest 3D structure at a fine spatial scale. In this study, weekly ASO measurements collected at ~1 pt/m2, primarily acquired to quantify snow volume and dynamics, are coherently merged to produce high-resolution point clouds (∼12 pt/m2) that better describe forest structure. The merging methodology addresses the spatial bias in multi-temporal data due to uncertainties in platform trajectory and motion by collecting tie objects from isolated tree crown apexes in the lidar data. The tie objects locations are assigned to the centroid of multi-temporal lidar points to fuse and optimize the location of multiple measurements without the need for ancillary data or GPS control points. We apply the methodology to ASO lidar acquisitions over the Tuolumne River Basin in the Sierra Nevada, California, during the 2014 snow monitoring campaign and provide assessment of the fidelity of the fused point clouds for forest mountain ecosystem studies. The availability of ASO measurements that currently span 2013–2017 enable annual forest monitoring of important vegetated ecosystems that currently face ecological threads of great significance such as the Sierra Nevada (California) and Olympic National Forest (Washington).
منابع مشابه
Validating reconstruction of snow water equivalent in Californias Sierra Nevada using measurements from the NASA Airborne Snow Observatory
Accurately estimating basin-wide snow water equivalent (SWE) is the most important unsolved problem in mountain hydrology. Models that rely on remotely sensed inputs are especially needed in ranges with few surface measurements. The NASA Airborne Snow Observatory (ASO) provides estimates of SWE at 50 m spatial resolution in several basins across the Western U.S. during the melt season. Primaril...
متن کاملComparison and Error Analysis of Reconstructed Swe to Airborne Snow Observatory Measurements in the Upper Tuolumne Basin, Ca
We present scientific and computing improvements to our new reconstruction model compared to a previous model. Snow water equivalent (SWE) reconstruction involves building a snowpack up in reverse, from melt out to peak SWE, given estimates of melt energy and fractional snow covered area (fSCA). The model was initially tested at an energy balance site on Mammoth Mountain, near the Upper Tuolumn...
متن کاملLidar measurement of snow depth: a review
Laser altimetry (lidar) is a remote-sensing technology that holds tremendous promise for mapping snow depth in snow hydrology and avalanche applications. Recently lidar has seen a dramatic widening of applications in the natural sciences, resulting in technological improvements and an increase in the availability of both airborne and ground-based sensors. Modern sensors allow mapping of vegetat...
متن کاملAdvances in forest characterisation, mapping and monitoring through integration of LiDAR and other remote sensing datasets
The diversity of scales and modes in which ground, airborne and spaceborne LiDAR operate has increased opportunities for quantitatively assessing forest structure, biomass and species composition and obtaining more general information on dynamics and ecological/commercial value. However, the level of information extracted can be increased even further by integrating data from other sensor types...
متن کاملEstimation of Airborne Lidar-Derived Tropical Forest Canopy Height Using Landsat Time Series in Cambodia
In this study, we test and demonstrate the utility of disturbance and recovery information derived from annual Landsat time series to predict current forest vertical structure (as compared to the more common approaches, that consider a sample of airborne Lidar and single-date Landsat derived variables). Mean Canopy Height (MCH) was estimated separately using single date, time series, and the co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 10 شماره
صفحات -
تاریخ انتشار 2018